FICHA DE INTRODUCCIÓN A LOS MÉTODOS NUMÉRICOS: MÉTODOS NUMÉRICOS PARA LA RESOLUCIÓN DE ECUACIONES NO LINEALES: BISECCIÓN Y NEWTON.

1. DATOS BÁSICOS DE LA ASIGNATURA

Nombre: Matemáticas II.

Código: 12637

Grado en Ingeniería Mecánica. Carácter: Formación básica.

Créditos: 6,00 -- Teoría: 3 -- Prácticas: 3

2. COMPETENCIAS TRANSVERSALES

(11): Aprendizaje permanente.

Actividades desarrolladas relacionadas con la adquisición de la competencia: Actividad grupal.

Descripción detallada de las actividades: Se formarán grupos de 4-5 personas y trabajarán uno o varios problemas de diversa dificultad. Se les entregarán problemas que deben entender, trabajarlos de forma individual y posteriormente en el propio grupo y presentar su solución de forma debidamente razonada. Criterios de evaluación: Se evaluará la actividad mediante la corrección de dichos problemas.

3. TEMA

Introducción a los métodos numéricos: métodos numéricos para la resolución de ecuaciones no lineales: bisección y Newton.

4. OBJETOS DE APRENDIZAJE

- Clasificación del tipo de ecuación a resolver.
- Resolución de ecuaciones lineales y no lineales mediante el método de bisección.
- Resolución de ecuaciones lineales y no lineales mediante el método de Newton.
- Resolución de ecuaciones no lineales con el programa Excel, Mathematica o Matlab.
- Resolución de problemas de aplicaciones reales.

5. ACTIVIDAD FLIP

 En primer lugar, y antes de ser impartida la clase teórica correspondiente, el alumno debe introducirse en los conceptos previos al tema como sucesiones de números reales y ecuaciones no lineales. Dicho material podrá encontrarlo en la opción "recursos" dentro del poliformat de la asignatura.

- Durante las clases correspondientes al tema, el alumno podrá preguntar las dudas que le hayan surgido.
- Seguidamente, cuando el profesor haya finalizado su exposición, el alumno repasará los ejemplos elaborados en clase (cuya comprobación se ejecuta con el programa Excel, Mathematica o Matlab) y realizará los ejercicios propuestos. Algunos de estos ejercicios serán resueltos en clase y el alumno podrá preguntar de nuevo si tiene alguna duda.
- Una vez acabado el tema, el alumno realizará los ejercicios correspondientes en las sesiones de prácticas de informática con la utilización de hojas de cálculo de Excel.

6. RECURSOS Y DESCRIPCIÓN

Bibliografía recomendada:

- Tema 8 de Problemas resueltos de métodos numéricos. Torregrosa Sánchez, Juan Ramón. Hueso Pagoaga, José Luis. Cordero Barbero, Alicia. Martínez Molada, Eulalia.
- 2. Tema 8 de Métodos numéricos para ingenieros. Chapra, Steven, C.; Canale, Raymond, P.
- 3. Tema 8 de Métodos numéricos, teoría, problemas y prácticas con Matlab. Infante del Río, Juan Antonio; Rey Cabezas, Jose María.

Se detalla a continuación los recursos *polimedia* correspondientes al tema de Introducción a los métodos numéricos: métodos numéricos para la resolución de ecuaciones no lineales: bisección y Newton.

Resolución aproximada de ecuaciones

Material en Lessons

Introducción

Método de bisección (teoría)

Ejemplo de bisección

Método de Newton-Raphson (teoría)

Ejemplo de Newton-Raphson

Resolución de ecuaciones algebraica no lineales

Método de la mitad en Excel

Método de Newton en Excel

7. EVALUACIÓN

La realización de uno o varios ejercicios grupales.

MÉTODOS NUMÉRICOS

EJERCICIO PRÁCTICO PARA LA RESOLUCIÓN DE ECUACIONES NO LINEALES: BISECCIÓN Y NEWTON.

Basado en el problema planteado en "Cálculo de la evolución de población". Victoria Suarez Mascareño. https://es.scribd.com/document/192688483/Toptativo-Suarez-Mascareno

Admitamos que el crecimiento de cierta población es una función continua en el tiempo que se modeliza mediante una ecuación diferencial de solución: $P(t)=P_0\ e^{xt}+w/x\ (e^{xt}-1)$ donde P(t) es el número de personas en t años, x es la tasa de natalidad, P_0 es el tamaño inicial de la población y w es la constante de inmigración, medida en número de inmigrantes al año. Supóngase que cierta ciudad tiene, originalmente, dos millones de habitantes y una inmigración de 500,000 personas al año. Se aprecia que al final del primer año la población es de 2,600,000 individuos. Se pide: aplica el método de bisección para hallar la tasa de natalidad en el intervalo [1/365,1] con un error menor que 10^{-3} y realiza una previsión de la población al cabo de 5 años.

	Α						
	Iteración						
0	0	0.00273972602	1	0.50136986301			
	1	0.00273972602	0.50136986301	0.25205479452			
	2	0.00273972602	0.25205479452	0.12739726027			
	3	0.00273972602	0.12739726027	0.06506849315			
	4	0.00273972602	0.06506849315	0.03390410958			
	5	0.03390410958	0.06506849315	0.04948630136			
	6	0.03390410958	0.04948630136	0.04169520547			
	7	0.04169520547	0.04948630136	0.04559075342			
	8	0.04169520547	0.04559075342	0.04364297945			
	9	0.04169520547	0.04364297945	0.04266909246			

x=0.043 P(5)=5,268,820

<u>B.</u>			
Iteración			
0	0.00273972602	1	0.50136986301
1	0.00273972602	0.50136986301	0.25205479452
2	0.00273972602	0.25205479452	0.12739726027
3	0.00273972602	.12739726027	0.06506849315
4	0.00273972602	0.06506849315	0.03390410958
5	0.03390410958	0.06506849315	0.04948630136
6	0.03390410958	0.04948630136	0.04169520547
7	0.03390410958	0.04169520547	0.03779965752
8	0.03779965752	0.04169520547	0.03974743149
9	0.03779965752	0.039747431495	0.03877354450

x=0.039P(5)=5,191,020

<u>C.</u>			
Iteración			
0	0.00273972602	1	0.50136986301
1	0.00273972602	0.50136986301	0.25205479452
2	0.00273972602	0.25205479452	0.12739726027
3	0.00273972602	0.12739726027	0.06506849315
4	0.00273972602	0.06506849315	0.03390410958
5	0.03390410958	0.06506849315	0.04948630136
6	0.03390410958	0.04948630136	0.04169520547
7	0.03390410958	0.04169520547	0.03779965752
8	0.03390410958	0.03779965752	0.03585188355
9	0.03585188355	0.03779965752	0.03682577053

x=0.037P(5)=5,152,630

 \circ

Utiliza el método de bisección para encontrar una solución aproximada con un error menor que $10^{-2}\,$ en el intervalo [1,2] para la ecuación e^X -3x=0.

- C A. x=1.5
- O B. x=1.51
- C. x=1.52

Aplica el método de Newton para encontrar una raíz aproximada de la ecuación e^X -tg(x)=0 en el intervalo [1,1.5] . Utiliza tres decimales redondeados en cada iteración hasta que se cumpla $|x_i^-x_{i-1}^-| \le 10^{-2}$

- C A. x=1.383
- C B. x=1.306
- C. x=1.331